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Overview

• Intro
• Spatial explorative analysis
• Defining neighborhoods and assigning weights
• Detecting spatial autocorrelation
• Spatial clusters
• Dealing with it in regression context

• Scoping the problem
• Spatial Eigenvector Mapping
• Spatial lag and spatial error model
• Other approaches
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What is special about space?

● Tobler‘s first law of geography "everything is related to everything else, but 
near things are more related than distant things."

Kim et al. A Closer Look at the Bivariate Association between Ambient Air Pollution and Allergic Diseases: The 
Role of Spatial AnalysisInt J Environ Res Public Health. 2018 Aug; 15(8): 1625
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Important tasks in spatial 
statistics

• Point pattern analysis
• Analysis of spatial configuration of a population (not a sample)
• Requires point data

• Interpolation
• Estimation of surfaces from a sample of observation 

• Spatial explorative analysis
• Analysis of spatial autocorrelation, hotspots and coldspots

• Spatial Cluster analysis

• Geographically weighted regression
• Regression analysis under incorporation of spatial 
autocorrelation
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Short history of spatial 
statistics

• Development independent in different disciplines:
– Geosciences especially for mining → Geostatistics (Kriging), 

e.g. Cressie
– Ecology, e.g. Legendre, Levin 
– Spatial econometrics, e.g. Anselin
– Geography, e.g. Griffith, Haining

• Therefore related concepts with varying terminology
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Spatial explorative analysis

• Visual interpretation of spatial data is e.g. complicated due to the 
necessary classification of continuous data

• It is not always obvious if a spatial pattern occurs in the data
• Clustered
• Regular
• Random

• Spatial autocorrelation is a way to quantify this
• A number of tools exist that quantified the relationship
• In difference to point pattern attribute values have a higher 
importance

• Not only geometry but distribution of z-values in space
• Data might be points, polylines or polygons
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Autocorrelation

● Much classic statistical theory assumes that errors are independent and 
identically distributed (iid), often conforming to a Gaussian distribution

– Simplifies equations since covariation terms can be set to zero

● However, errors might be structured, violating the simplifying 
assumptions

● Hierarchical structure, e.g. by unaccounted effects of groups

● Temporal autocorrelation

● Spatial autocorrelation
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Effects of autocorrelation

● Violating assumptions
● Increasing variance for positive spatial autocorrelation, 

decreasing variance for negative spatial autocorrelation
– Estimated standard errors are too small (or too big for negative sac) which effects 

p-values

– Mixing up model selection

● Increase or decrease correlation coefficients
● Sample sizes goes down (for positive sac)

– Effecting standard errors and p-values and model selection procedures 
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Effects of positive autocorrelation

●  

No sac

SAC

Increasing variance
Tails become heavier
Preservation of the mean
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Effects of positive autocorrelation

●  

No sac

SAC

Increasing variance
More zeros and outliers
Preservation of the mean
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Effects of positive autocorrelation

●  

No sac

SAC

Distribution moving to the
All-or nothing situation
Preservation of the mean
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Mechanisms behind spatial autocorrelation

● Induced spatial dependence
function dependency of the response on spatially structured predictors
e.g. ecological niche for mosquitos of Aedes type, distribution of charging 
stations follows population density

● True autocorrelation
functional dependency between the response and adjacent response 
values, e.g. infectious diseases, distribution of charging stations depends 
on charging stations in adjacent units

● Historical dynamics
Past events have led to a spatial structure that influences the response
e.g. infrastructure (railroads, highways) led to spatially structured path 
dependencies
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Reasons for spatial autocorrelation

•The response is autocorrelated
• High densities of charging stations in one neighborhood might 
reduce number in adjacent neighborhoods (negative 
autocorrelation, spill over effect)

•A predictor with a spatial structure is missing which might 
lead to autocorrelation of the residuals

•We cannot distinguish between the two cases from the 
residuals

•From a theoretical perspective we might be able to 
develop a hypothesis on the reason for the presence of 
spatial autocorrelation
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Spatial autocorrelation

Y i=i ,i≈N (0,σ
2
)

y i=β zi+i
z i=ξi

ξi≈N (0,σξ
2)

y i=β z i+ρ y y i−1+i
zi=ρ z i+ξi

ξi≈N (0,σξ
2)

y i=ρ y i−1+i
−1⩽ρ⩽1

y i=β z i+i
z i=ρz z i+ξi

Complete independence

Spatial independence

Inherent autoregressive

Induced autoregressive

Doubly autoregressive
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Representation of autocorrelation

● Autocorrelation can be e.g. represented in the variance-covariance 
matrix of the error term

●

●

●

●

● The variance-covariance matrix of the error term is assumed (and tested) 
to follow a specific structure:

– Correlation in groups: covariance only for members of the same group

– Temporal auto-correlation: covariance depends on temporal lag

– Spatial auto-correlation: covariance depends on spatial lag / neighborhood definition

Y=X β+

≈N (0, I σ2
)

Y=X β+

≈N (0,∑ σ
2
)

Independent errors Structured errors
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Defining spatial relationship
Neighbors and spatial weights
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Defining neighborhoods

•A neighborhood (or contiguity) matrix C 
represents if pairs of spatial features are to be 
considered as neighbors or not

•A spatial weight W matrix is a weighted form of 
such a neighborhood matrix

•W represents the possible spatial interactions for 
the selected neighborhood+ weighting approach
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Neighborhood

• Spatial autocorrelation depends 
on a defined neighborhood

• What is a neighbor?
• Several approaches possible
• Polygon or raster data: 
contiguity relationship

• Polygons that share a border are 
neighbors

• Rook or queen
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Queen and Rook neighborhood
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Queen and Rook neighborhood

Bivand, R.S., Pebesma, E.J., Gómez-rubio, V., 2008. Applied Spatial Data Analysis with R. Springer, New York, NY
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Other types of relationships

•Distance based
• Based on Euclidean distance
• K-nearest neighbors
• Every neighbor inside of search distance

•Based on graph measures
• Based on topological position based on centroids (or points on 
surface)

• Delaunay Triangulation, Sphere of Influence, Gabriel graph, 
relative graph neighbors, minimal spanning tree

•Higher order neighborhood definitions possible
• Neighbors of neighbors
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K-nearest neighbors

Bivand, R.S., Pebesma, E.J., Gómez-rubio, V., 2008. Applied Spatial Data 
Analysis with R. Springer, New York, NY
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Distance threshold based neighbors
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Topological neighborhood definitions

Bivand, R.S., Pebesma, E.J., Gómez-rubio, 
V., 2008. Applied Spatial Data Analysis 
with R. Springer, New York, NY
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Topological neighborhood definitions

• Minimum spanning tree
connects all nodes together while 
minimizing total edge length

• Relative neighborhood graph
all nodes connected for those the 
lens formed by the radii of their 
circles contains no other points

• Gabriel graph
all nodes connected if were is no 
other node inside a circle with their 
distance

• Delaunay triangulation
all nodes connected for which the 
circumcise around ABC contains no 
other nodes

A B
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Selecting a neighborhood – things to consider

•GIS precision might lead to artifacts in neighborhoods 
for contiguity definition

• Sliver polygons etc.
• Fix it beforehand 
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Selecting a neighborhood – things to consider

• Is Euclidean distance important for the assumed 
process?

• If you don't know you could investigate using different 
approaches

• If distance is important we might assign weights based on 
distance. Use different approaches to investigate importance of 
distance
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Selecting a neighborhood – things to consider

•Does the definition lead to objects without neighbors?
– Artifacts or true islands?
– Problematic for analysis
– Exclude or set zero.policy
– If zero policy is set to TRUE, weights vectors of zero length 

are inserted for regions without neighbor in the neighbors list
– These will in turn generate lag values of zero
– The spatially lagged value of x for the zero-neighbor region 

will then be zero, which may (or may not) be a sensible 
choice
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Assigning weights

• How to deal with uneven neighborhood distributions?
• Binary coding B – neighbor (1) or not (0)

• Objects with many neighbors get more weight

• Row standardized coding W : weight (0 or 1) divided by the number of 
neighbors, i.e. weights sum to unity for each object (sums over all links to n)

• Mostly used in practice, assumed for some approaches, the effect of the neighbors is 
expressed as the weighted sum

• Globally standardized coding C: weight (1 or 0) divided by sum of all 
weights, i.e. sum to n for all objects

• U: equal to C divided by the number of neighbors (sums over all links to 
unity)

• S: variance-stabilizing coding scheme proposed by Tiefelsdorf et al. 1999, 
p. 167-168 (sums over all links to n). Between W and C
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Selecting a neighborhood – things to consider

•Neighborhood frequency distribution even or skewed?
• Contiguity -> typically relatively equal distribution
• Distance based -> skewed
• K-nearest -> equally distributed

•K-nearest does not lead to a symmetric relationship!
•Some analysis require symmetric relationships

• It is possible to make a nb relationship symmetric by 
adding neighbors (make.sym.nb)

• It is also possible to use set operations on nbs (intersect, 
union, difference, complement) or to manually modify nbs
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Selecting a weighting scheme – things to consider

•Beside coding style U all coding styles sum to n over all 
links → estimated spatial auto-correlation should be 
comparable

• In addition, weights can be inversely weighted by 
distance prior to standardization

•S and W might lead to non-symmetric weight matrix
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Spatial exploratory analysis
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What are we looking for?

•DATA = SMOOTH + ROUGH (Tukey, 1975)
•SPATIAL DATA = SPATIAL SMOOTH + SPATIAL ROUGH
•
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What are we looking for?

•Spatial smooth
– Presence of spatial trend?
– Spatial heterogeneity – is variation in data values as 

smooth as implied by some trend?
– Global spatial dependence – are high/low values 

close to other high/low values, anywhere on the 
map?

– Spatial heterogeneity – localized patterns of 
dependence? Hot-/coldspots?
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What are we looking for?

•Spatial rough
– Presence of outliers?

● In addition to distributional outliers: are there 
spatial outliers (which might not be distributional 
outliers)

● i.e. are there some data points special with 
respect to their neighborhood?
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Moran’s I

• Measures global spatial auto-correlation (for all observations)
• I > 0 positive auto-correlation, clustered
• I < 0 negative auto-correlation, dispersed
• Expected value under absence of spatial auto-correlation E(I) = -n(n-1)-1

• wi,j – weights for observation I and j from the weight matrix W
• xi – value of observation i

I=
1

∑
i=1

n

wi , j

∑
i= 1

i≠ j

n

∑
j= 1

j≠i

n

wi , j(xi− x̄ )(x j− x̄)

1
n √∑

i=1

n

(xi− x̄)
2
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Moran‘s I

•Not bound to the interval [-1,1]
– Might shrink but typically expand
– Interval defined by the largest and second largest 

eigenvalue of the weight Matrix W
– Often the interval is more in the range -0.5 to 1.15
– The expected value for no autocorrelation is not zero 

but E(I) = -1/(n-1)
•For regression residuals a modified test statistic is used

•For rates the empirical Bayes index modification is used
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Examples - Gradient

40

Value raster Correlogram that shows how spatial 
autocorrelation changes with distance
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Example - Gradient

41

Some pairs of distance class 1 Moran‘s I for all pairs of distance class 1
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Example - Gradient

42

Some pairs of distance class 2 Moran‘s I for all pairs of distance class 2
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Example - Gradient

43

Some pairs of distance class 8 Moran‘s I for all pairs of distance class 8
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Example - Gradient

44

Close observations are very similar. Effect diminishes 
with increasing distance and turns negative at a 
distance of 6
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Random pattern

Peak at distance class 26 is an artefact – based on only 
a few observation. Therefore, large distance classes 
should not be plotted!
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Concentric pattern
Pattern for distance classes larger than 15 are not 
reliable here
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Concentric pattern
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Patchy pattern
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Patchy pattern with holes
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Patchy pattern with holes
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Patchy pattern with holes
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Patchy pattern with holes, 
different size of patches
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Patchy pattern with holes, 
different size of patches
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Patchy pattern with holes, 
different size of patches
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Patchy pattern with holes, 
different size of patches



56
0 10 20 30 40

0
1

0
2

0
3

0

x

y

LISA - local indicator of spatial 
association

• E.g. local Moran‘s I
• Spatial auto-correlation based on a focal function
• Takes instationarity into account

I i=n(xi− x̄)

∑
i= 1

i≠ j

n

w i , j(xi− x̄ )

∑
i=1

n

(x i− x̄)
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Local Moran‘s I

• Calculates Moran’s for the neighborhood of a point and relates it 
to the mean over all data

57

No double sum as in global Moran‘s I
Only sum over the observations in the 
neighborhood

Mean for all observations

I i=n(xi− x̄)

∑
i= 1

i≠ j

n

w i , j(xi− x̄ )

∑
i=1

n

(x i− x̄)

I=
1
n
∑
i=1

n

I i
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Critic local Moran‘s I

•Direction of change is not available
• High values at location i, surrounded by high values in 
neighborhood -> positive value

• Low values at location i, surrounded by low values in 
neighborhood -> positive value

• High values at location i, surrounded by low values in 
neighborhood -> negative value

• Low values at location i, surrounded by high values in 
neighborhood -> negative value

58
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Local Moran‘s I

•Therefore often the value of the observation is reported 
together with the average value in the neighborhood

•High – high – cluster of high values
•Low – low – low values (low relative to the global mean) 
in a neighborhood of high values

•High –low – high value (compared to the mean) in a 
neighborhood of negative spatial autocorrelation, i.e. 
high local outlier

•Low - high – low value (compared to the mean) in a 
neighborhood of positive spatial autocorrelation, i.e. a 
cluster of low values
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Local Moran‘s I
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Getis G and G*

•  Relation between the local 
mean at location I to the 
global mean (local moving 
average, hotspot/coldspot)

•Sign indicates  direction of 
deviation

•Gi
* and Gi differ by that Gi

* 

does include the point itself

Gi=

∑
j= 1

j≠i

n

w ij xi x j

∑
j= 1

j≠i

n

xi x j

Gi
star

=

∑
j=1

n

w ij xi x j

∑
j=1

n

xi x j
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Getis G and G*



Spatial cluster identification
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dbScan

• Aims to identify spatially clustered 
points

• A cluster is defined as the subset of 
points that can be reached from all 
points in the cluster by a distance 
less than a threshold

– In addition to core points there 
are points at the edges that can 
be reached from the cluster

– Core points: at least minP points 
in distance

• Point outside clusters are considered 
noise points



Adjusting for spatial 
autocorrelation in regression 

models
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How to deal with it?

• Incorporate it in additional covariates
• Capture the spatial configuration in additional covariates and add them to the 

model
• Spatial eigenvector mapping
• Auto-covariate Regression
• Wavelet analysis

• Adjust the error term
• Fit a variance-covarinace matrix based on the non-independence of spatial 

observations
• GLS and GLMM – error structure needs to be assumed
• Simultaneous autoregressive error models (SAR) and conditional autoregressive 

models (CAR) 
• Generalized estimating equations (GEE) split the data into smaller clusters 

before modelling the variance-covariance relationship
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How to deal with it? (2)

•Adjustments of test statistics
• Dutilleul’s modified t-test, {SpatialPack}
• CRH-correction for correlations  {SpatialPack}

•Lagged response modells
• The response depends on the response of the neighboring units

•Lagged predictor effects (SLX model)
• Spill-over effect from in neighboring units 
• Artifacts due to the artificial spatial discretization

• Are administrative units well suited for health data?
• MAUP

75
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Properties of some approaches

• Wavelet and GEE: flexible with distributional assumption, no 
categorical variables possible
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Spatial autocorrelation in residuals
Spatial error model

• Incorporates spatial effects through error term

• Where:

• If there is no spatial correlation between the errors, 
then  = 0

ξ
β



W
xy

serror term eduncorrelat of vector :ξ

tcoefficienerror  spatial :

matrix W  weights

 using weightedspatially  s,error term of vector :




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Spatial autocorrelation in response
Spatial lag model
• Incorporates spatial effects by including a spatially 
lagged dependent variable as an additional predictor 

• Where:
•

• If there is no spatial dependence, and y does no depend 
on neighboring y values,  = 0 

βρ  xWyy

tcoefficien spatial  :

serror term of  vector :

sy variableexplanator on the nsobservatio ofmatrix   :

matrix W sfor weight response laggedspatially   the:

ρ



x

Wy
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Spatial eigenvector mapping

•Based on the eigenfunction decomposition of spatial 
connectivity matrices

•Eigenvectors from these matrices represent the 
decompositions the spatial weight Matrix into all 
mutually orthogonal m

•Eigenvectors with positive eigenvalues represent 
positive autocorrelation, whereas eigenvectors with 
negative eigenvalues represent negative autocorrelation

•Only eigenvectors with positive eigenvalues are used
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Spatial eigenvectos

• Spatial pattern for independent 
dimensions of spatial structure

• Could be used to build hypothesis 
about missing covariates etc.
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Spatial eigenvectos

• Correlation length decreases with 
decreasing eigenvalue of the 
eigenvectors

...
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Spatial eigenvectos

• Eigenvectors with negative 
eigenvalue represent negative 
spatial autocorrelation

...
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Spatial eigenvector mapping

•Compute connectivity matrix
– Needs to be symmetric!

•Compute eigenvectors of the centered similarity matrix
•Select eigenvectors to be included in the GLM

• eigenvectors are added to a model until the spatial 
autocorrelation in the residuals, measured by Moran’s I, is non-
significant
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Literature for further studies

• Anselin, L., Rey, S.J., 2014. Modern Spatial Econometrics in 
Practice. GeoDa Press LLC, Chicago, IL.

• Spatial lag and error model
• Not with R but GeoDa, GeoDaSpatial and Python
• Packed with Theory and Examples

• Bivand, R.S., Pebesma, E.J., Gómez-rubio, V., 2008. Applied 
Spatial Data Analysis with R. Springer, New York, NY. 

• Overview about spatial tasks in R
• A bit geeky, not much theory

• Fortin, M.-J., Dale, M., 2005. Spatial analysis: a guide for 
ecologists. Cambridge University Press, Cambridge (UK).

• Excellent overview about spatial statistics
• No code
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Literature for further studies

• Dormann et al. 2007. Methods to account for spatial autocorrelation in 
the analysis of species distributional data: a review. Ecography 30:609–
628.

• Excellent overview about methods
• R code
• Strengths ad weaknesses of the different methods

• Carl, G., C. F. Dormann, and I. Kühn. 2008. A wavelet-based method to 
remove spatial autocorrelation in the analysis of species distributional 
data. Web Ecology:22–29

• Add on to Dormann et al (2007)
• R code

• Griffith, D. A. 2006. Spatial Modelling in Ecology: The Flexibility of 
Eigenfunction Spatial Analysis. Ecology 87:2603–2613.

• Spatial eigenvector mapping and filtering
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Literature for further studies

• Bivand, R., Piras, G., 2015. Comparing Implementations of 
Estimation Methods for Spatial Econometrics. J. Stat. Softw. 63, 1–
36. doi:10.18637/jss.v063.i18

• Comparison of the different implementations of the spatial lag and error model in 
different software packages

• Good theoretical overview

• Vignettes for the different spatial R packages
• Spatial task view on CRAN
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Literature for further studies

• Chun, Y. & Griffith, D. A. (2013): Spatial Statistics & Geostatistics, SAGE
• Griffith, D.A., Chun, Y. and Li, B. (2019): Spatial Regression Analysis Using 

Eigenvector Spatial Filtering, Elsevier Academic Press
• Haining & Li (2020) Modellign Spatial and Spatio-Temporal Data – A 

Bayesian Approach, CRC Press
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