Introduction to Geographic Information Systems and Urban Data Science

Dr. Tessio Novack (novack@uni-Heidelberg.de)

About me

- **2006** Bsc. In Geography (University of Sao Paulo)
- **2009** Msc. in Remote Sensing (National Institute for Space Research)
- **2016** Dr.-Ing. in Remote Sensing (Technical University of Munich)
- since 2016 PosDoc in Geo-informatics (GIScience, Uni Heidelberg)

Research areas:

- Urban mobility
- VGI data analysis
- Critical GIS

Schedule for today

- **10:00 11:00** Introduction to GIS and Urban Data Science
- **11:00 11:30** Preliminaries to Ex. 1 and 2 Basics of GIS
- **11:30 12:30** Ex. 1 and 2 Basics of GIS
- **14:00 14:45** Preliminaries to Ex. 3 Spatial Regression with GeoDA
- **14:45 17:00** Ex. 3 Spatial Regression with GeoDA

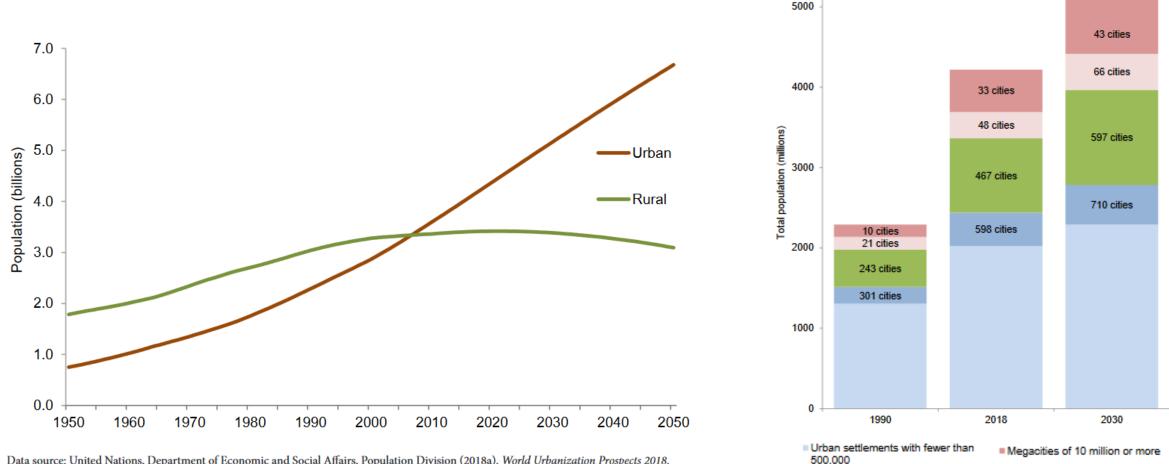
17:00 – 17:30 Discussion

Outline of this talk

Why cities are important

Why data is important for managing and analysing cities

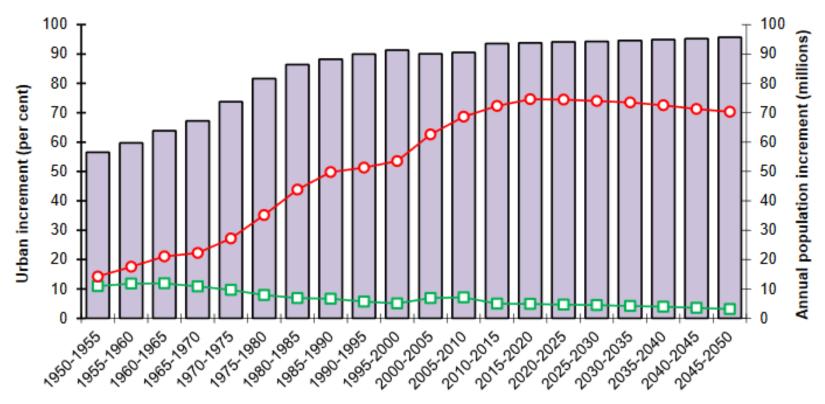
What kinds of data we can rely on


Why GIS is such an useful framework

Why should we focus on cities?

Worldwide expansion of urban areas

Large cities of 5 to 10 million


Data source: United Nations, Department of Economic and Social Affairs, Population Division (2018a). World Urbanization Prospects 2018.

Medium-sized cities of 1 to 5 million

Cities of 500 000 to 1 million

Cities are expanding mainly in less developed areas

Urban increment of less developed regions as a percentage of the world urban increment

- Annual increment of the urban population of more developed regions

-O-Annual increment of the urban population of less developed regions

Problems associated with unplanned urban growth

Landslides

Water contamination

Noise pollution

Floods

Traffic Jams

Air pollution

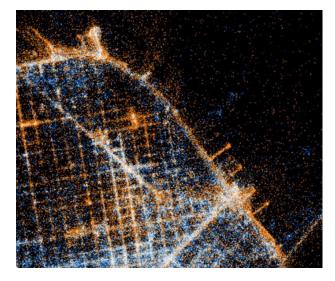
Problems associated with unplanned urban growth

Atlanta Barcelona **Built-up** area **Built-up** area **Population** Urban area Transport carbon emissions Population Urban area Transport carbon emissions 7.5 2.8 162 0.7 2.5 4,280 million km² tonnes CO₂/person million km² tonnes CO₂/person (public + private transport) (public + private transport)

Atlanta and Barcelona have similar populations but very different carbon productivity

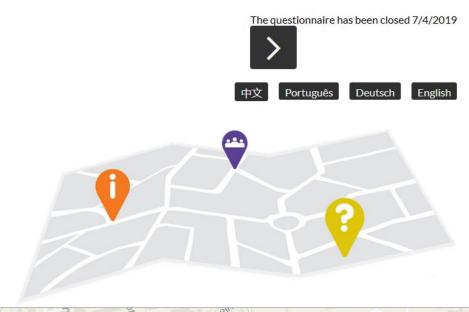
Planning is everything!

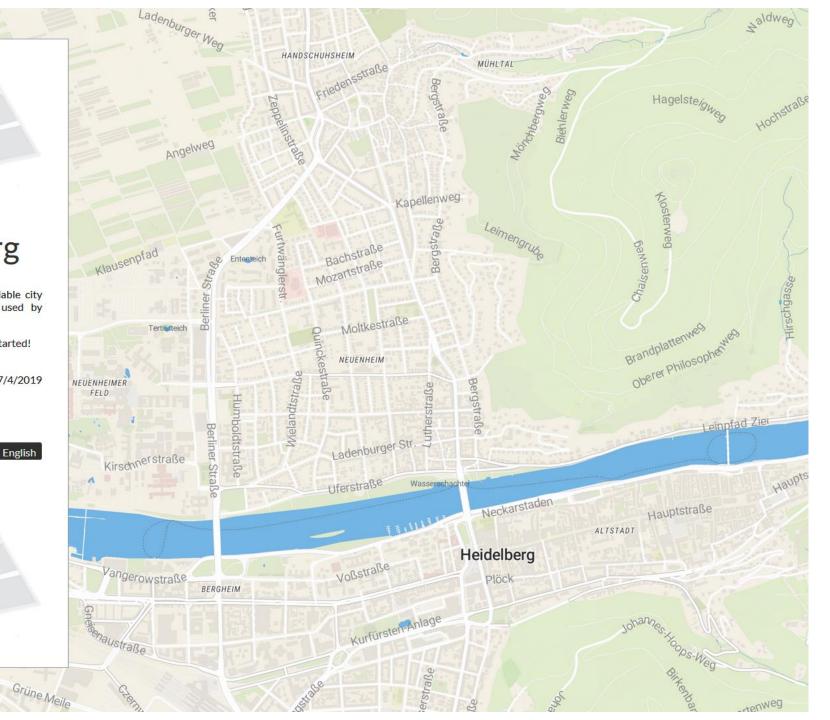
- Aspects of a good urban quality of life
 - Easy access to daily duties
 - Affordable housing
 - Sense of security
 - Adequate environmental conditions
 - Access to public spaces
 - Sense of community
 - Accessibility to services, e.g. health care, children care, cultural facilities, etc.
 - Access to natural areas
 - Access to civic space!



Urban planning

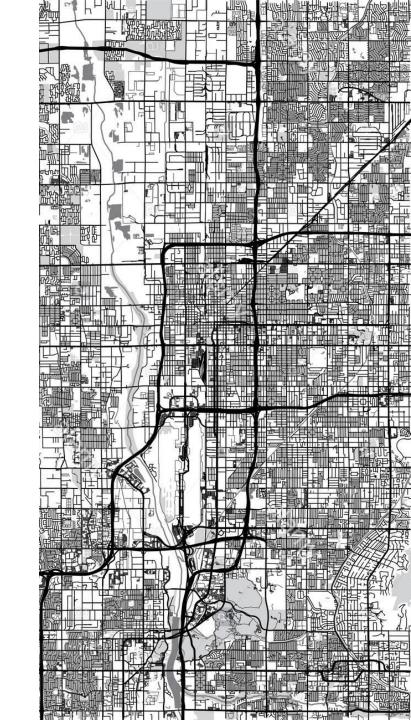
- Definition
 - Technical and political process concerned with the design of the built environment
- Operates mainly through
 - Policy recommendations
 - Transportation and traffic planning
 - Land-use zoning
- Two major pillars
 - Data and information
 - Public participation



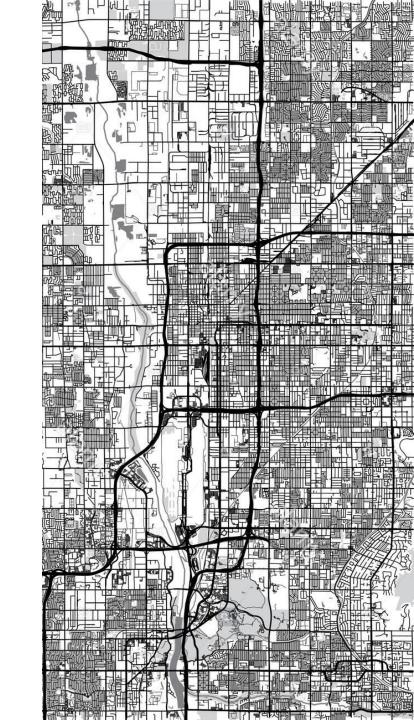

Healthy Living in Heidelberg

Your opinion is asked on how we can make Heidelberg a healthier and more sociable city concerning possible improvements to green areas and to streets frequently used by pedestrians.

We thank you already for your participation. Choose your prefered language and get started!

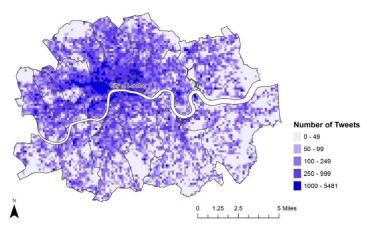


https://app.maptionnaire.com/en/6572/


The city as a system

- Basic spatial components:
 - Locations (e.g., the city hall)
 - Pathways (i.e. streets and subway lines)
 - Regions (e.g., blocks, census tracts, districts)
- Basic flows:
 - People and goods
 - Energy
 - Data and information
- Consumption and production
 - Material goods
 - Solid waste
 - Information

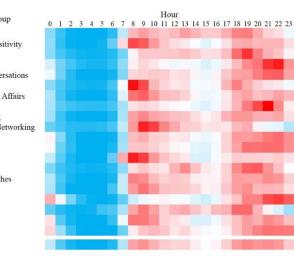
The city as a system


- Centers of capital reproduction
- Overlapping networks of different extents of materiality
- Spaces emotionally charged with
 - Emotions
 - Memories
 - Feelings
 - Life stories

Urban Data Science is the multi-disciplinary area of research concerned with using new and emerging forms of data, alongside computational and statistical techniques, to study cities

Case example

1. Twitter data extraction

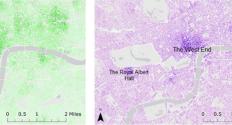


2. Topic modelling

Lansley G., Longley PA. (2016) The geography of Twitter topics in London. *Computers, Environment and Urban Systems*. 58, p.85-96.

Twitter Topic Group Photography and Sights Optimism, Kindness and Positivity Leisure and Attractions TV and Film Humour and Informal Conversations Transport and Travel Politics, Beliefs and Current Affairs Sport and Games Anticipation and Socialising Business, Information and Networking Pessimism and Negativity Music and Musicians Routine Activities Food and Drink Body, Appearances and Clothes Social Media and Apps Slang and Profanities Place and Check-Ins Wishes and Gratitude Foreign and Other All Tweets

-1.5 -1 -0.5 0 0.5 1 1.5



3. Spatio-temporal analysis

b. Museums and Galleries

c. Nightlife

d. Shows and Entertainments

2 Miles

Typical applications

- Extracting spatio-temporal patterns of human activity in cities
- Extracting spatio-temporal patterns of urban mobility
- Detecting events
- Extracting emotional patterns tied to urban spaces

Smart cities

CONTRACTOR OF

What are smart cities?

- Cities that rely on technology for their government and management
- Cities that leverage digital data as well as computational, communication and internet technologies for
 - Improving traffic management and other urban operations
 - Increasing security,
 - Saving energy and reducing consumption of resources,
 - Improving governance through
 - Fostering interaction among citizens
 - Empowering citizens with information
 - Facilitating communication between government and communities

Key words: performance, real-time response, interactivity

Key smart cities technologies

Sensors

loT

Big urban data analytics

Cloud computing

Smart governance

Smart cities technologies

Sensors

- Used for counting pedestrians, bicycles and vehicles in
 - Streets,
 - Train stations,
 - Buses, etc.
- Surveillance cameras (often harnessed by AI)
 - Government buildings,
 - Fight crime,
- Monitoring environmental conditions of the city
 - Noise,
 - Humidity,
 - Pollutant quantities, etc.

Smart cities technologies

- Deep Neural Networks can be trained to detect and distinguish objects, such as
 - Male/female
 - Adult/child
 - Vehicle type
- As well as for
 - Face and plate recognition
 - Color, size, speed, path, direction, etc.
- Video is thus transformed into structured data

Smart cities technologies

ENVIRONMENTAL SENSOR

Particles suspended in the air, humidity, temperature and battery

SOUND SENSOR

Sound level, battety, temperature

PARKING SENSOR

Available parking space, occupied space

AMBIENT HUMIDITY AND TEMPERATURE SENSOR

Environmental temperature, RH, battery

SOIL MOISTURE SENSOR

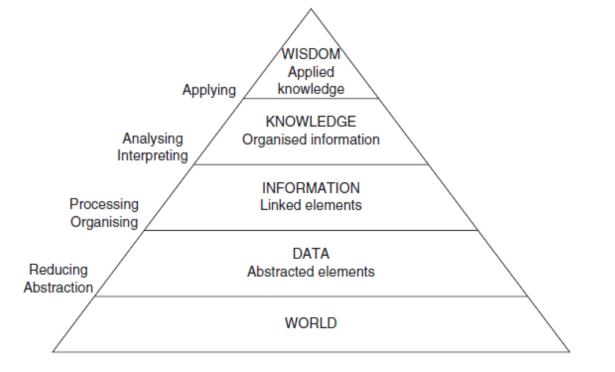
Soil moisture, Soil temperature, Battery

WASTE SENSOR

Filling percentage (%) Temperature, Battery, Vibration HTE MIX

Ambient humidity, Ambient temperature, Soil moisture, Soil temperature, Battery

Reflecting on data



0 10 1 0 0 0 0 1 0

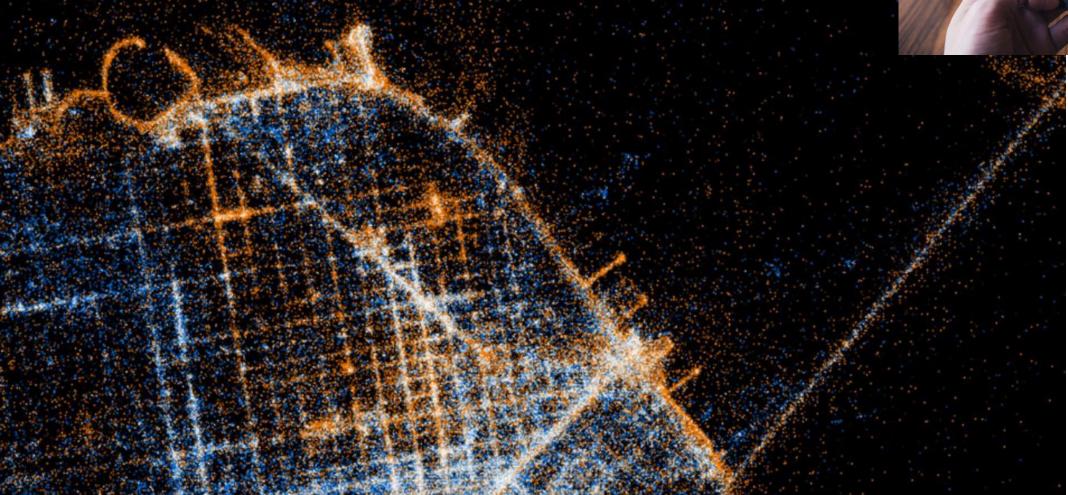
0

10

- Elements that can be abstracted, i.e. measured and recorded, from phenomena
- Selected according to purpose
- Data is an epistemological feature!

What is data?

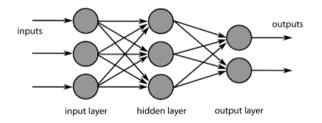
Open Data


- Freely available data without restrictions of use
- Main sources:
 - Science
 - Governments
 - NGOs
- Important aspect of transparency, social inclusiveness and democratic city management
- Empower people and stimulate research and businesses

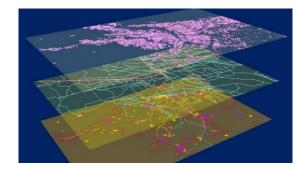
Geo-social media data

Geo-social media data

Natural Language Processing


- Word-sense similarity
- String similarity
- Text classification
- Sentiment analysis
- Topic modelling

Network Analysis



- Nodes' importance
- Networks attributes
- Network segmentation
- Shortest-path calc.

Image Interpretation – Deep Learning

GIS and (Spatial) Statistics

- Spatial clustering
- Correlation metrics
- Point to area interpolation

Volunteered Geographic Information

- Definition
 - Collaborative projects to create a free editable map of the world
 - Users may collect data using manual survey, GPS devices, aerial photography, and other free sources, or use their own local knowledge of the area
- Wikimapia
- OpenStreetMap
 - "OpenStreetMap is a map of the world, created by people like you and free to use under an open license"
 - Definitely the most successful VGI platform to date
 - Geometrically and semantically relatively complete and accurate

Node: Nando's Southwark Arches (3134099059)

Updated a restaurant

Edited over 2 years ago by tbm Version #5 · Changeset #56442453 Location: 51.5040819, -0.1037565

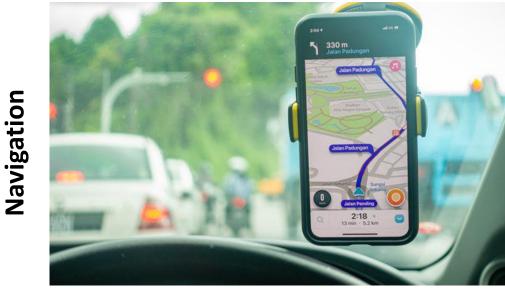
Tags

addr:postcode	SE1 0XH
addr:street	Blackfriars Road
amenity	restaurant
cuisine	chicken
name	Nando's Southwark Arches
opening_hours	Mo-Th 11:30-22:00; Fr 11:30-23:00; Sa 12:00-23:00; Su 12:00-22:00
operator	Nando's
postal_code	SE1 0XH
website	https://www.nandos.c o.uk/restaurants /southwark-arches- london
Download XML · View History	

Location-based services

- Smartphone-based applications that provide services and information to users based on their location and geographic data
- Examples:
 - Place recommendation (e.g., Foursquare, Google Places)
 - Routing and navigation
 - Cycling, running and fitness (e.g., MapMyRide, Strava)
 - Social interaction (e.g., Tinder)
 - Augmented reality
 - Mobility (e.g. Uber, Lemon)
- Data is sometimes purchasable in anonymized formats

Location-based services


https://www.intelligenttransport.com/transport-news/89550/wazeto-share-traffic-data-with-transport-authorities/

e-Scooter

Ride offer

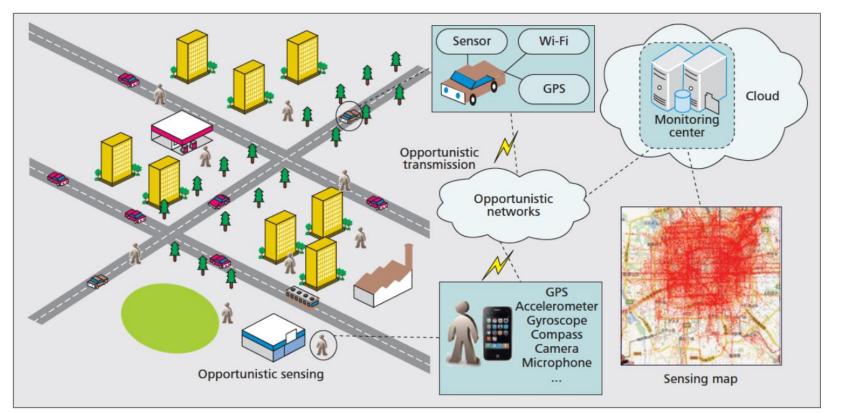
Location-based services

- Participation in scientific research by citizens through data collection
- Scientists profit from harnessed data collection
- Citizens profit from situation awareness and community empowerment
- Many applications in the environmental sciences
- As well as in the Urban Sciences:
 - Air and noise pollution monitoring
 - Urban fauna monitoring
 - Enhancing people's security

About Cities People Download API Join! Login

NoiseTube Mobile

Noisetube-SoftLab Music & Audio

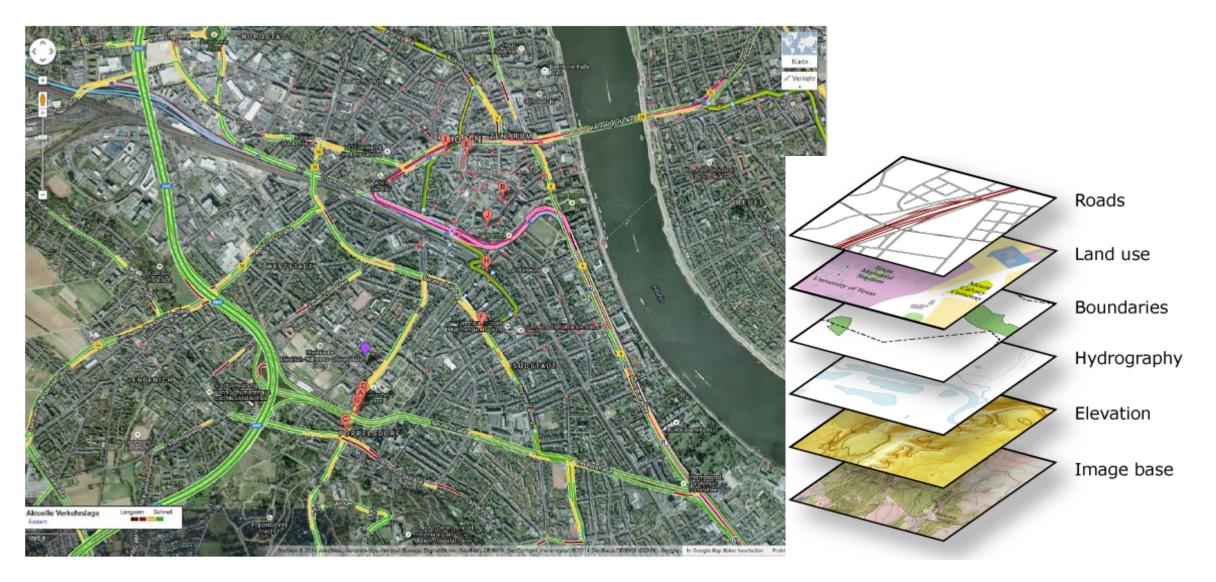

PEGI 3

This app is compatible with your device.

Crowdsensing

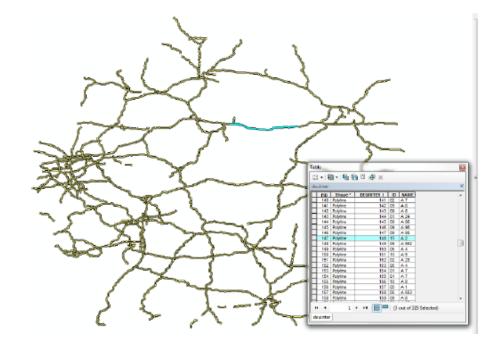
GIScience Karlsruher Institut für Technologie

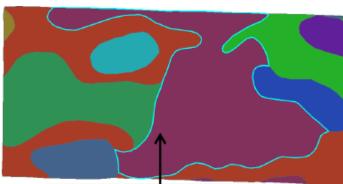
- Crowdsourcing of sensor data from mobile devices
- Can be participatory or opportunistic

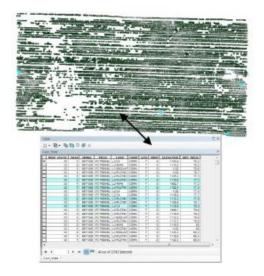

35. 29 Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8) (2014). D Yuan, Š \Box Zhao, Ma, H.,

Geographic Information Systems

Eastern Branch Elizabeth River


Geographic Information Systems




Geographic Information Systems

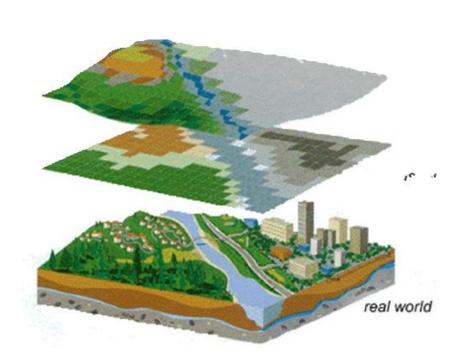
	(Surv	9Y								
	FID	Shape *	ARA	PERMITTER	VM043 /	101043 A ID	INAJOR1	MINOR1	HIUSYNI	MUREY
٠	0	Polygen	0.08087	0,11878	67 (0	6750	999	397164	140	397084
	1	Petrgen	0	0,01072		7069	999	397124	90902	397124
	2	Polygen	0.00085	0,11673		7114	999	397963	136	307083
	- 3	Petrgen	0.00085	0,11673	7914	7114	999	397953	136	307063
	- 4	Petrgen	0.08082	0.83874	7138	7135	990	397191	2758	397101
	5	Petrgen	0	0,00955	7100	7180	999	397992	197	307092
		Polygen	0.08081	0,82345	7104	7194	890	387113	336	357113
	7	Polygen	0.08081	0.82346	7104	7194	890	387113	336	307113
		Polygen	0.08082	0.0293	7 106	7195	890	301012	1015	357072
		Polygen	0	0,00477	7225	7225	890	357950	1255	357080
	10	Petrgers	0	0.00491	7260	7260	890	387193	275	207103
	11	Petropero	0	0.00556	7215	7315	895	381124	90902	357124
	12	PERMIT	0	0,01725	7354	7384	895	381953	138	357083
	13	Petropero	0	0.01728	7384	7394	890	381953	138	357083
	14	Petropero	8	0.00676	7425	7425	895	381954	140	357084
	16	Polygen		6,80826	104	7468	999	267101	2758	367101
	16	Polygen	Ú.	6,80829	106	7468	999	267101	3758	367101
	17	Potygen	ú	0,01436	168	7480	990	267103	379	367182

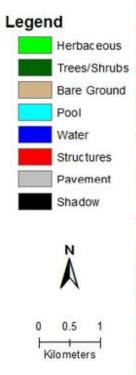
Geographic Information Systems

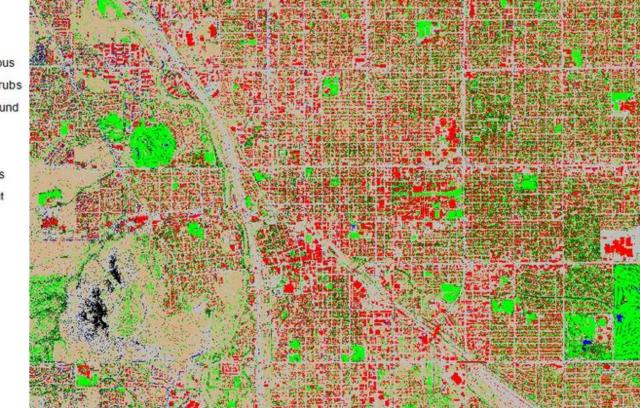
- Geographic Information Systems (GIS)
 - Systems designed to encode, manage, analyze and communicate spatial data.

Extract	Manage	Analyse	Visualise		
How do I get the data in the system?	How do I make sure the different data are free of inconsistencies and are relatable	How do I derive new information from the existing data?	How do I present the data?		

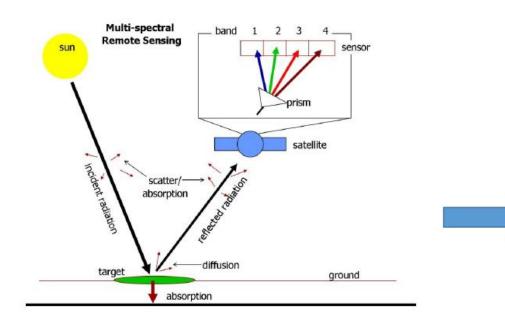
GIS – Fundamental concepts




- Geographic Information Systems (GIS)
 - Systems designed to encode, manage, analyze and communicate spatial data.
- GIScience Multidisciplinary research field dedicated to
 - Development of data structures and computational techniques for representing, analysing and communicating spatial data
 - Studying and understanding geospatial phenomena and dynamics
- Critical GIS
 - Reflects on the social implications and the potential for positive social transformation implicit on GISystems and GIScience's axioms, methods, etc.


Geographic data types within a GIS

• Raster data



Geographic data types within a GIS

• Raster data

Geographic data types within a GIS

- Vector data, i.e.
 - Points (bus stations)
 - Lines (streets, subway lines)
 - Polygons (census tracts)
- Alpha-numerical tables
 - Structured data, i.e.
 - Numerical and
 - Nominal variables
 - Unstructured, e.g.
 - Images and text

Types of GIS – Desktop GIS

- A GIS software operating in one or a group of networked computers
- Types
 - GIS with GUI
 - Spatial databases

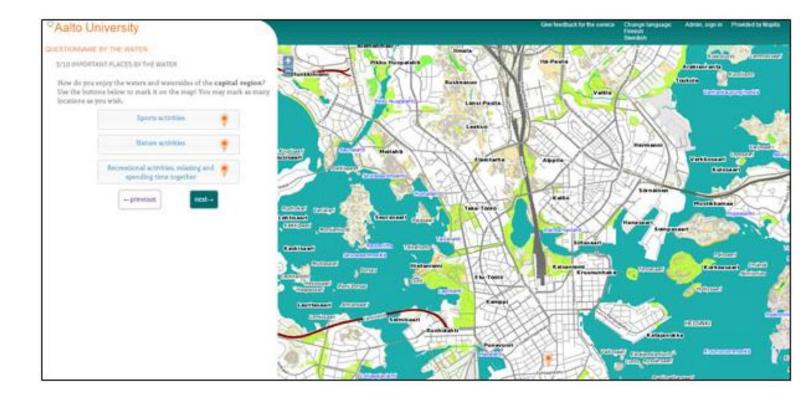
🍭 datadri - ArcMap - ArcInfo									
File Edit View Bookmarks	Insert Selection (Geoprocessin	a Customiz	windows	Help				
						▶?	⊖ _m _ ≥≚	5214-4-16	a • • • • • • • • • • • • • • • • • • •
					20		Page Text •		
							I rage text.	E	
Table Of Contents			e (1927)	4 ×	1.4 < 1.11	÷			
Stable Of Contents				4 X					2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
Layers C:\GTA Land Use Project	\Data\Greater Toronto	Area\peel							Toolbox
🖃 🗹 landuse_final									×.
<all other="" values=""></all>				5					
LANDUSE 0-Uncoded				<u>(N</u>					
1-Residential	Table			- Company				E	
2-Commercial/Sh	□-	🔁 🖾 📲 🕽	×						
3-Industrial/Empl	SApeelfinal							×	
4-Government/In: 5-Townhouses/Se							SUM_COL13 SI		
6-Apartments/Co	O Polygon Polygon	2		220 675	130 70	35 10	395 750	10	
📕 7-Mix(Commercia	2 Polygon	4		1970	220	40		0	
8-Church	3 Polygon	5		1150	65	0		10	
9-Public/Structure	4 Polygon 5 Polygon	6		1155	100 120	10		0 =	
24-Farmland 25-Hydro Corrido	6 Polygon	8		250	70	10		10	
26-Rail Corridor	7 Polygon	9	3200	2790	350	45	3215	10	
27-Freeway	8 Polygon	44	965	875	70	20	970	0	
28-Street	9 Polygon 10 Polygon	103 246	3320 150	2115 110	945 45	260	3330 155	70	
29-Parks	11 Polygon	254	4850	3375	1225	205	4840	10	
30-Cemetary	12 Polygon	255	3375	2335	910	110	3380	0	
31-Golf Course/de 32-Attraction (Priv	13 Polygon 14 Polygon	256 257	6570 5165	4390 3425	1760 1395	390 300	6570 5170	240	
33-Attraction (Pri	15 Polygon	258	4220	2990	1125	100		0	
34-School	16 Polygon	259	6045	4255	1505	280	6055	20	
97-GO Station and	17 Polygon	260	5195 4310	3690 2785	1170 1260	340 250	5195 4315	60 20	
98-Undeveloped L	18 Polygon 19 Polygon	261	5945	4195	1420	315	5920	375	
99-Water	20 Polygon	264	6220	4385	1515	295	6200	315	
SApeelfinal	21 Polygon	265	4475	3350	995 80	105	4490	20	
🖂 🖂 c:\gta land use project\c	22 Polygon 23 Polygon	267	1480 1725	1365 1205	440	35	1480	40	
peel total	24 Polygon	270	1990	1575	380	40	1995	20	
III stat_fin	25 Polygon	271	5540	4655	755	105	5550	0	
	26 Polygon 27 Polygon	272	3105 3020	2875 2220	215 705	20	3110 3020	0	
	28 Polygon	275	5615	4530	995	95		20	[empty]
	29 Polygon	276	5620	4555	910	130	5625	10 +	[empsyl
	III			1000	4400		Feee I	+	
	H 4 1	→ H 📕	🔲 (0 out o	of 100 Selected)				
	SApeelfinal								
	<u></u>	_	_			_	_	11	
				5					
					B) @ H <			1	III
L									datadri - ArcMap - ArcInfo 4.45 0.95 Centimeters

Types of GIS – WebGIS

- A service by which consumers may choose what the map will show
- Types of WebGIS
 - Analytical web maps
 - Collaborative web maps
 - Online atlases
 - Static web maps

https://maps.london.gov.uk/ima/

https://maps.london.gov.uk/canopy



Types of GIS – PPGIS

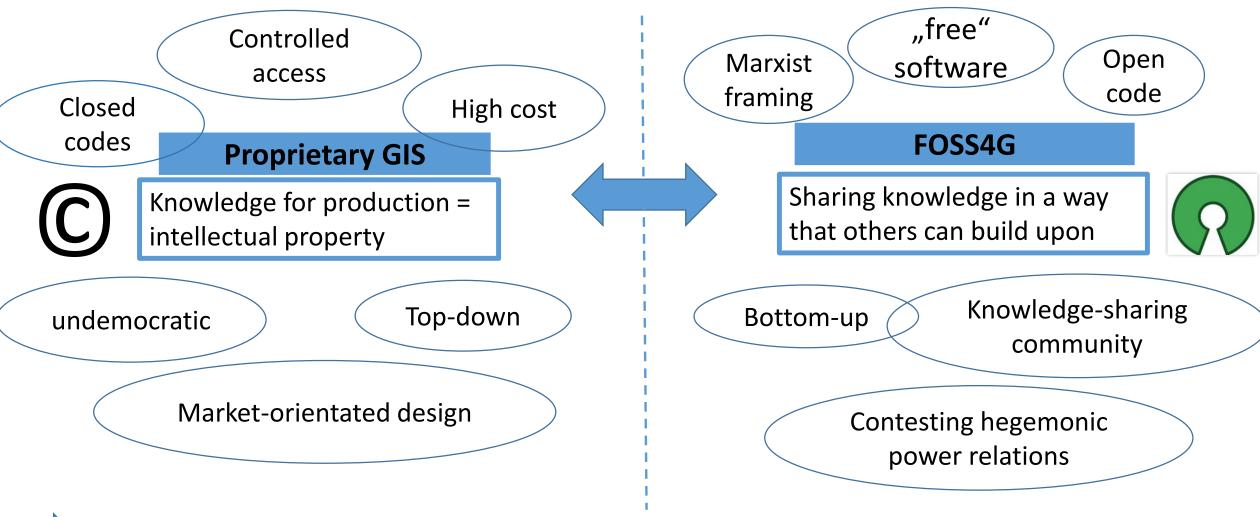
- Public Participation GIS are basically map-based survey interface
- Useful in
 - Participatory planning
 - Participatory research
 - Grassroots movements

https://maptionnaire.com/

Types of GIS – PPGIS

- Central goals of PPGIS
 - Equitable access to spatial data and GIS technologies
 - Incorporation of local knowledge
 - Discouragement of top-down
 - Quantitative & qualitative data
 - Represent complex social processes
 - Leverage geospatial technology to suit the needs of marginalized groups

- Annual conference of practitioners and advocates for FOSS4G (Free and Open Source Software for Geospatial)
- Organized by FOSSGIS a organization promoting free and open software and data
- Strong exchange with the OSM community



Proprietary vs. FOSS4G

Software companies have ultimate control

A GIS is a **conceptualized framework** for representing, storing, managing, visualizing and analysing spatial and geographic data

Not necessarily a software type, but **a system**, possibly comprised of different independent components

Critique to GIS

- Representing geographic phenomena using digital objects involves abstraction
- Maps are not objective representations of the Earth!

Critique to GIS

- Surveillance and privacy
 - Who detains and controls our data?
 - Open data vs. data as a strategic asset
- Power relations
 - Whose agenda is behind digital maps applications and spatial media?
- Simplicity of representation
 - Objects with attributes are caricatures of reality
 - Geography cannot be layered
 - Boolean logic: one feature -> one class
 - Omits personalized views from the ground

